QLVariance#
- class stixpy.timeseries.QLVariance(data, meta=None, units=None, **kwargs)[source]#
Bases:
GenericTimeSeriesQuicklook variance time series
Variance of counts is calculated for one energy range over counts summed from selected detectors and pixels in 40 accumulators, each accumulating for 0.1s. These accumulators are double buffered with depth of 32bits and approximate data rate of 1 Mhz.
Examples
>>> from stixpy.data import test >>> from sunpy.timeseries import TimeSeries >>> from stixpy.timeseries.quicklook import QLLightCurve >>> ql_var = TimeSeries("https://pub099.cs.technik.fhnw.ch/fits/L1/2020/05/06/QL/" ... "solo_L1_stix-ql-variance_20200506_V02.fits") >>> ql_var <stixpy.timeseries.quicklook.QLVariance object at ...> SunPy TimeSeries ---------------- Observatory: SOLO/STIX Instrument: STIX Channel(s): timedel<br>control_index<br>4.0-20.0<br>4.0-20.0_err Start Date: 2020-05-06 00:00:02 End Date: 2020-05-06 23:59:58 Center Date: 2020-05-06 11:59:59 Resolution: 4.015 s Samples per Channel: 21516 Data Range(s): timedel 0.00E+00<br>control_index 6.00E+00<br>4.0-20.0 4.93E+00<br>4.0-20.0_err 5.87E+02 Units: ct<br>s<br>None timedel control_index 4.0-20.0 4.0-20.0_err time 2020-05-06 00:00:01.531 400 2 0.419844 73.901962 2020-05-06 00:00:05.531 400 2 0.169844 36.952671 2020-05-06 00:00:09.531 400 2 0.154844 18.479719 2020-05-06 00:00:13.531 400 2 1.359844 295.603607 2020-05-06 00:00:17.531 400 2 0.114844 18.479719 ... ... ... ... ... 2020-05-06 23:59:41.531 400 1 0.919844 147.802231 2020-05-06 23:59:45.531 400 1 0.919844 147.802231 2020-05-06 23:59:49.531 400 1 2.159844 295.603607 2020-05-06 23:59:53.531 400 1 0.094844 18.479719 2020-05-06 23:59:57.531 400 1 0.154844 18.479719 [21516 rows x 4 columns]
Methods Summary
is_datasource_for(**kwargs)Determines if the file corresponds to a STIX QL LightCurve
TimeSeries.plot([axes, columns])Show a plot of the data.
Methods Documentation
- classmethod is_datasource_for(**kwargs)[source]#
Determines if the file corresponds to a STIX QL LightCurve
TimeSeries.