QLBackground#
- class stixpy.timeseries.QLBackground(data, meta=None, units=None, **kwargs)[source]#
Bases:
GenericTimeSeriesQuicklook X-ray time series from the background detector.
Nominally QL background files contain counts from the background detector summed over five specified energy ranges. These QL data are double buffered into accumulators of 32bit depth. Maximum rate is approximately 30kHz and one live time counter is available. Integration time is parameter with default value of 32s
Examples
>>> from stixpy.data import test >>> from sunpy.timeseries import TimeSeries >>> from stixpy.timeseries.quicklook import QLLightCurve >>> ql_bg = TimeSeries("https://pub099.cs.technik.fhnw.ch/fits/L1/2020/05/06/QL/" ... "solo_L1_stix-ql-background_20200506_V02.fits") >>> ql_bg <stixpy.timeseries.quicklook.QLBackground object at ... SunPy TimeSeries ---------------- Observatory: SOLO/STIX Instrument: STIX Channel(s): control_index<br>timedel<br>triggers<br>triggers_err<br>4.0-10.0<br>10.0-15.0<br>15.0-25.0<br>25.0-50.0<br>50.0-150.0<br>4.0-10.0_err<br>10.0-15.0_err<br>15.0-25.0_err<br>25.0-50.0_err<br>50.0-150.0_err Start Date: 2020-05-06 00:00:04 End Date: 2020-05-06 23:59:56 Center Date: 2020-05-06 11:59:59 Resolution: 8.03 s Samples per Channel: 10758 Data Range(s): control_index 1.60E+01<br>timedel 0.00E+00<br>triggers 1.10E+03<br>triggers_err 3.23E+01<br>4.0-10.0 7.72E+01<br>10.0-15.0 1.34E+02<br>15.0-25.0 6.07E+01<br>25.0-50.0 2.17E+01<br>50.0-150.0 4.95E+00<br>4.0-10.0_err 9.25E+00<br>10.0-15.0_err 1.85E+01<br>15.0-25.0_err 1.85E+01<br>25.0-50.0_err 1.85E+01<br>50.0-150.0_err 9.25E+00 Units: None<br>ct<br>s control_index timedel ... 25.0-50.0_err 50.0-150.0_err time ... 2020-05-06 00:00:03.531 3 800 ... 2.345208 0.707107 2020-05-06 00:00:11.531 3 800 ... 2.345208 0.707107 2020-05-06 00:00:19.531 3 800 ... 2.345208 0.000000 2020-05-06 00:00:27.531 3 800 ... 2.345208 0.000000 2020-05-06 00:00:35.531 3 800 ... 2.345208 0.000000 ... ... ... ... ... ... 2020-05-06 23:59:23.531 2 800 ... 0.707107 1.224745 2020-05-06 23:59:31.531 2 800 ... 0.000000 2.345208 2020-05-06 23:59:39.531 2 800 ... 0.000000 4.636809 2020-05-06 23:59:47.531 2 800 ... 0.000000 1.224745 2020-05-06 23:59:55.531 2 800 ... 0.707107 2.345208 [10758 rows x 14 columns]
Methods Summary
is_datasource_for(**kwargs)Determines if the file corresponds to a STIX QL LightCurve
TimeSeries.plot([axes, columns])Show a plot of the data.
Methods Documentation
- classmethod is_datasource_for(**kwargs)[source]#
Determines if the file corresponds to a STIX QL LightCurve
TimeSeries.
- plot(axes=None, columns=None, **plot_args)[source]#
Show a plot of the data.
- Parameters:
axes (
Axes, optional) – If provided the image will be plotted on the given axes. Defaults toNone, so the current axes will be used.columns (
str, optional) – Columns to plot, defaults to ‘counts’.**plot_args (
dict, optional) – Additional plot keyword arguments that are handed topandas.DataFrame.plot().
- Returns:
axes (
Axes) – The plot axes.